[TIL] 2024-09-05 (ML/SQL)
TIL (2024)/2024.092024. 9. 6. 00:07[TIL] 2024-09-05 (ML/SQL)

Today I Learned (2024-07-12)목차Today I Learned (2024-07-12)오늘 공부한 내용1. KDT (DL)MLP와 CNN 비교CNN 주요 개념고급 CNN 모델Fine-Tuning조기 종료(Early Stopping)ModelCheckpoint이미지 분류 모델 만들기2. SQLDataBase어려웠던 내용궁금한 내용과 부족한 내용느낀 점오늘 공부한 내용1. KDT (DL)MLP와 CNN 비교MLP (Multi-Layer Perceptron)모든 노드가 서로 연결된 fully connected 구조. 입력과 출력 간의 관계를 학습하지만, Gradient Vanishing 문제로 인해 깊은 구조에서는 학습이 어려울 수 있다. 이를 해결하기 위해 ReLU, Batch Normal..

[TIL] 2024-09-01 (ML)
TIL (2024)/2024.092024. 9. 2. 00:20[TIL] 2024-09-01 (ML)

Today I Learned (2024-09-01)목차Today I Learned (2024-09-01)오늘 공부한 내용1. 머신러닝K-Nearest Neighbor(KNN)Logistic Regression(로지스틱 회귀)SVM(Support Vector Machine) / SVCDecision Tree(의사결정나무)Ensemble(앙상블)편향(Bias) 와 분산(Variance)Ensemble과 Bagging, BoostingBagging : Random ForestBagging : Extra Tree2. 메타코드(Pandas와 Bigquery를 활용한 데이터 분석)Pandas어려웠던 내용궁금한 내용과 부족한 내용느낀 점오늘 공부한 내용1. 머신러닝K-Nearest Neighbor(KNN)기본적인 머..

[TIL] 2024-08-27 (ML)
TIL (2024)/2024.082024. 8. 28. 00:21[TIL] 2024-08-27 (ML)

Today I Learned (2024-08-27)목차Today I Learned (2024-08-27)오늘 공부한 내용1. KDT (ML)회귀 모델 평가 지표분류 모델 평가 지표추천 시스템 모델의 평가 지표과적합이 일어나는 이유과적합 감지과적합 방지과소적합불균형 데이터 처리 imbalanced-learn어려웠던 내용궁금한 내용과 부족한 내용느낀 점오늘 공부한 내용1. KDT (ML)회귀 모델 평가 지표MAE(Mean Absolute Error)모델의 예측값과 실제값의 차이의 절대값의 평균절대값을 취하기 때문에 가장 직관적으로 알 수 있는 지표이다.오차가 커졌을 때 상대적으로 중요하지 않게 나타날 수 있다. MSE(Mean Squared Error)오차카 커질수록 가중치가 커진다.오차가 큰 값일 경우 더..

[TIL] 2024-08-26 (ML)
TIL (2024)/2024.082024. 8. 27. 00:41[TIL] 2024-08-26 (ML)

Today I Learned (2024-08-26)목차Today I Learned (2024-08-26)오늘 공부한 내용1. KDT (ML)머신러닝 모델 만들기2. 머신러닝 입문타이타닉 데이터 EDA어려웠던 내용궁금한 내용과 부족한 내용느낀 점오늘 공부한 내용1. KDT (ML)머신러닝 모델 만들기Random Forest Regression 사용만료 일자 예측하기2. 머신러닝 입문타이타닉 데이터 EDAEDAhead(), tail(), 각 feature 의미 확인다섯 수치 요약(5 number summary) 확인최소값(minium), 제1사분위수, 제2사분위수, 제3사분위수, 최대값(maximum) 확인하기데이터프레임.describe()EDA 에서는 사분위수를 사용Q1:제1사분위수 (25%에 해당하는 값..

[TIL] 2024-08-22 (ML)
TIL (2024)/2024.082024. 8. 23. 01:56[TIL] 2024-08-22 (ML)

Today I Learned (2024-08-22)목차Today I Learned (2024-08-22)오늘 공부한 내용1. KDT (ML)머신러닝 과제 하기2. 인프런(공공데이터 분석)마무리하기어려웠던 내용궁금한 내용과 부족한 내용느낀 점오늘 공부한 내용1. KDT (ML)머신러닝 과제 하기회원 만료및탈퇴 데이터를 이용하기Random Forest Regression 모델 사용과집합 데이터였다.시간이 부족하였다.2. 인프런(공공데이터 분석)마무리하기시도별 공원 비율구하기scatterplot 으로 전국 도시공원 시각화시도별 도시공원 빈도수 구하기pairplot 으로 서브플롯 그리기지도 표현(folium)어려웠던 내용머신러닝 실습 과제가 어려웠다.이유는 방향?을 못잡겠다.궁금한 내용과 부족한 내용머신러닝 잘..

[TIL] 2024-08-20 (ML)
TIL (2024)/2024.082024. 8. 21. 00:37[TIL] 2024-08-20 (ML)

Today I Learned (2024-07-12)목차Today I Learned (2024-07-12)오늘 공부한 내용1. KDT(Machine Learning)Classification(분류)t-value(유의수준)결정 트리(Decision Tree)KNN(K-Nearest Neighbor) 알고리즘유클리드 거리(Euclidean Distance)앙상블 학습(모델)회귀(Regression)경사하강법(Gradient Descent)어려웠던 내용궁금한 내용과 부족한 내용느낀 점오늘 공부한 내용1. KDT(Machine Learning)Classification(분류)분류는 학습데이터로 주어진 데이터의 피쳐와 레이블값을 머신러닝 알고리즘으로 학습해 모델을 생성하고, 이렇게 생성된 모델에 새로운 데이터 값이..

image